Balancing energy expenditure with energy storage is a key cellular decision, which requires the integration of diverse external and internal signals and is important both for humans and animals alike. The bristleworm Platynereis has a short lifespan, and needs to closely align its sexual maturation and reproduction to phases of the moon. The molecular endocrine mechanisms by which the bristleworm synchronizes external signals with energy metabolism have remained unclear.
A team led by Florian Raible and first author Gabriele Andreatta now found out that the hormone corazonin regulates the expression of enzymes that metabolize carbohydrates. In sexually mature animals, after feeding, and in specific lunar phases the hormone was upregulated. Worms in which the corazonin gene had been experimentally disrupted, on the other hand, showed delayed maturation, reduced growth, and slower regeneration. Molecular analysis revealed how mutant worms were more prone to store energy rather than using it for development and reproduction. Thus, corazonin signalling appears to integrate the worm’s maturation status, as well as information on the lunar phases and food availability, so as to decide on how metabolic energy is used.
Corazonin is part of a larger family of hormones called gonadotropin releasing hormones (GnRH). These are found in many vertebrates and even humans. In humans these hormones trigger puberty and are crucial for the timing of the monthly reproductive cycle in women.
Original Publication:
Gabriele Andreatta, Caroline Broyart, Charline Borghgraef, Karim Vadiwala, Vitaly Kozin, Alessandra Polo, Andrea Bileck, Isabel Beets, Liliane Schoofs, Christopher Gerner, and Florian Raible: Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis.
https://doi.org/10.1073/pnas.1910262116
Dissecting the turgor sensing mechanisms in the blast fungus Magnaporthe oryzae
Pikobodies: What does it take to bioengineer NLR immune receptor-nanobody fusions
scRNA and phylogenetics
Gene regulatory mechanisms governing human development, evolution and variation
Regulation of Cerebral Cortex Morphogenesis by Migrating Cells
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced