On this page
Eukaryotic cells are packed with many different organelles. In order to respond to environmental cues and coordinate homeostasis, cells need to tightly control the inter-organelle communication. One of the key organelles for the inter-organelle communication is the ER, which is the site of the synthesis and turnover of a major fraction of lipids and membrane proteins. The ER is directly connected to the nucleus by junctions with the outer nuclear membrane. This ER-to-nucleus connectivity is crucial for cellular homeostasis and to supply new lipids and membrane proteins to the nucleus during nuclear growth. However, what the structural nature of the ER-nucleus connection is, and how its size and number is regulated to support the key cellular functions, remains poorly understood. We aim to reveal the structure and function of this major yet poorly characterized inter-organelle connection and uncover the molecular mechanism governing it.
The correlative live imaging with high resolution electron microscopy that we have established previously, allows to visualise intra-cellular structures in situ in human cells in a spatio-temporally-resolved and quantitative manner. By combining this novel correlative imaging technology with quantitative live cell imaging and a microscopy-based loss-of-function screens, we will elucidate systematically how the structure and function of the ER-nucleus connection changes during nuclear growth, identify molecular players regulating them, and reveal how the ER-nucleus connectivity mechanistically controls the ER-to-nucleus communication.
Shotaro was born in Tokyo, Japan. He obtained a PhD in Biophysics at Kyoto University. In 2011, he moved to Germany to carry out postdoctoral work at the European Molecular Biology Laboratory (EMBL). In 2019, he started his own lab at the Max Perutz Labs in Vienna.
A correlative live imaging with electron microscopy was established that allows to examine subcellular structures and protein complexes at nano-meter resolution at specific stages of cell-cycle in a quantitative manner, and therefore can enable to visualize biological processes which have not been able to study due to the limited resolution of conventional microscopy.
The correlative imaging technique was applied to study nuclear envelope (NE) assembly during mitotic exit, and could demonstrate for the first time that the NE forms from highly fenestrated ER sheet whose holes progressively shrink. This finding provides a new approach to explore the ER-NE connectivity and ask how it is regulated to ensure proper ER-nucleus communication.
A quantitative map of nuclear pore assembly reveals two distinct mechanisms.
Otsuka, Shotaro; Tempkin, Jeremy O B; Zhang, Wanlu; Politi, Antonio Z; Rybina, Arina; Hossain, M Julius; Kueblbeck, Moritz; Callegari, Andrea; Koch, Birgit; Morero, Natalia Rosalia; Sali, Andrej; Ellenberg, Jan
A mitotic chromatin phase transition prevents perforation by microtubules.
Schneider, Maximilian W G; Gibson, Bryan A; Otsuka, Shotaro; Spicer, Maximilian F D; Petrovic, Mina; Blaukopf, Claudia; Langer, Christoph C H; Batty, Paul; Nagaraju, Thejaswi; Doolittle, Lynda K; Rosen, Michael K; Gerlich, Daniel W
Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings.
Otsuka, Shotaro; Steyer, Anna M; Schorb, Martin; Hériché, Jean-Karim; Hossain, M Julius; Sethi, Suruchi; Kueblbeck, Moritz; Schwab, Yannick; Beck, Martin; Ellenberg, Jan
This is a collaboration project with Daniel Gerlich's group at IMBA.
Project title: “Elucidating the mechanics of mitotic chromosome assembly by light-, electron-, and atomic force microscopy"
The Otsuka Group participates in the special doctoral program 'Signaling Mechanisms in Cellular Homeostasis (SMICH)', funded by the Austrian Science Fund (FWF).
Austrian Academy of Sciences DOC Fellowship: Helena Bragulat Teixidor
Project title: “How do endoplasmic reticulum and nucleus communicate?" (P 36743-B)
Structural guided nanobodies against covid19 and tomography in a box
The Molecular Acrobatics of Autophagy
From chromosome folding by loop extrusion to anti-plasmid nucleases in bacteria
Identifying and exploiting cell-state dependent metabolic programs
Mind matters. VBC mental health awareness
Chromosomes as Mechanical Objects: from E.coli to Meiosis to Mammalian cells
Convergent evolution of CO2-fixing liquid-liquid phase separation
New ways of leading: inclusive leadership and revising academic hierarchies
Title to be announced
Decoding Molecular Plasticity in the Dark Proteome of the Nuclear Pore Complex
Neurodiversity in academia
Title to be announced