On this page
In each generation, the two parental genomes must pair, recombine, and segregate to a newly mixed set of haploid chromosomes in a specialized cell division called meiosis. Failures in this process lead to miscarriages and congenital diseases. Research in my lab is directed towards the identification of genes and processes essential for accurate chromosome segregation during meiosis. For this, we study the meiotic entry network, which ensures the timely coordination and initiation of meiotic processes. We study the mechanisms of recognition and the well-ordered side-by-side alignment of homologous chromosomes. Furthermore, we are interested in the roles of topoisomerases during meiotic recombination, and their function in resolving unwanted chromosomal connections or crossover intermediates. The identification of any new risk factor leading to unfaithful partitioning of chromosomes into gametes is of high relevance to human health.
Excellent forward and reverse genetics, easy cytological observation of all meiotic stages and the transparency of the animal make the nematode Caenorhabditis elegans an excellent model system for our studies. State-of-the art CRISPR/Cas technologies are well established and allow the rapid generation of novel alleles and tagging of individual factors that can be followed by high-resolution imaging. This way we have generated numerous novel meiotic mutants that provide(d) us insight into events of prophase I of meiosis.
Verena Jantsch-Plunger studied Biochemistry at the University of Vienna. She conducted her diploma and PhD work at the Carnegie Institution of Washington under the supervision of Nobel Laureate Dr. Andrew Fire (discovery of RNA-interference). She earned her PhD in 1993 at the University of Vienna. Since 2017 she is Prof. of Eukaryote Genetics at the University of Vienna.
My lab gained crucial insights into meiotic chromosome movement. In Caenorhabditis elegans abrogation of movement leads to the establishment of the synaptonemal complex between non-homologous DNA sequences. We found that SUN-1 is part of a complex that transduces mechanical forces and signals across the nuclear membrane and connects chromosomes in the nucleus to the force generating cytoplasmic apparatus. The complex ensures chromosome movement until essential meiotic tasks required to build a crossover have been fullfilled.
DOI: 10.1016/j.devcel.2007.05.004
DOI: 10.1016/j.cell.2009.10.045
DOI: 10.1371/journal.pgen.1001219
DOI: 10.1371/journal.pgen.1003335
DOI: 10.1007/s00412-013-0436-7
DOI: 10.1016/j.cub.2016.09.007
DOI: 10.1016/j.devcel.2018.03.018
We show how lamins “increase the fluidity of the nuclear membrane” during chromosome movement in the earliest stage of prophase I. By artificially increasing the rigidity of the lamina, we could demonstrate reduced chromosome movement resulting in abnormal chromosomes and increased apoptosis. We deciphered that cross talk between the lamina opening and events at the chromosomes exists.
DOI: 10.1016/j.devcel.2018.03.018
We demonstrated that the C. elegans homolog of a conserved DNA repair factor RMI1 (RecQ-mediated genome instability protein 1) plays multiple genetically separable roles that together ensure the faithful inheritance of intact genomes during sexual reproduction. Strikingly, it spatially regulates the distribution of crossovers on chromosomes, demonstrating that the RTR (RecQ helicase-topoisomerase-RMI1/2) complex can act locally within specific chromosome domains.
DOI: 10.1371/journal.pbio.1002412
Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase.
Link, Jana; Paouneskou, Dimitra; Velkova, Maria; Daryabeigi, Anahita; Laos, Triin; Labella, Sara; Barroso, Consuelo; Pacheco Piñol, Sarai; Montoya, Alex; Kramer, Holger; Woglar, Alexander; Baudrimont, Antoine; Markert, Sebastian Mathias; Stigloher, Christian; Martinez-Perez, Enrique; Dammermann, Alexander; Alsheimer, Manfred; Zetka, Monique; Jantsch, Verena
Matefin/SUN-1 Phosphorylation Is Part of a Surveillance Mechanism to Coordinate Chromosome Synapsis and Recombination with Meiotic Progression and Chromosome Movement.
Woglar, Alexander; Daryabeigi, Anahita; Adamo, Adele; Habacher, Cornelia; Machacek, Thomas; La Volpe, Adriana; Jantsch, Verena
Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1.
Penkner, Alexandra M; Fridkin, Alexandra; Gloggnitzer, Jiradet; Baudrimont, Antoine; Machacek, Thomas; Woglar, Alexander; Csaszar, Edina; Pasierbek, Pawel; Ammerer, Gustav; Gruenbaum, Yosef; Jantsch, Verena
The Group Jantsch participates in in the special Doctoral Program 'Chromosome Dynamics' reviewed and funded by the Austrian Research Fund FWF.
Nutrient-regulated control of lysosome function by signaling lipid conversion
Shedding Light on the Dark Side of Terrestrial Ecosystems: Assessing Biogeochemical Processes in Soils
Protein homeostasis and lifelong cell maintenance
Dissecting the turgor sensing mechanisms in the blast fungus Magnaporthe oryzae
Pikobodies: What does it take to bioengineer NLR immune receptor-nanobody fusions
When all is lost? Measuring historical signals
Gene regulatory mechanisms governing human development, evolution and variation
Regulation of Cerebral Cortex Morphogenesis by Migrating Cells
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced