Why are small RNAs so important?
Sebastian Falk has joined the Max Perutz Labs as group leader in March 2019. He is interested in the mechanisms of gene silencing and the regulation of gene expression by small RNAs. A biochemist and structural biologist by training, he received his PhD from Heidelberg University, where he worked on the targeting of membrane proteins. During his Postdoc at the MPI of Biochemistry in Munich he studied eukaroyotic RNA degradation.
Fighting genomic parasites – lessons from an unusual organism
Transposable elements (TEs) are parasitic DNA sequences that can jump within the host genome and disrupt its normal function. To preserve genome integrity, eukaryotic cells are in an arms race to fight TEs. The main weapon in their arsenal are small RNAs, that silence the transcription of TEs. Paradoxically, to identify and ultimately eliminate TEs, precursors of small RNAs must be transcribed from TEs. Scientists led by Josef Loidl from the Max Perutz Labs now show details of how the organism Tetrahymena thermophilia manages to effectively eliminate TEs from their active genome. The findings are published in the journal “Current Biology”.
From X-ray videos to analysing paintings
Europe’s largest conference on crystallography starts on 18 August in Vienna and offers a varied programme for the general public: Be it for the development of new drugs, research into earthquakes or the analysis of paintings: Crystallography plays an important role in many disciplines, even in those where you might not expect it. The conference with about 1,000 participants aims at presenting the latest developments in this field. It starts on Sunday, 18 August, and is jointly organised by the Technical University of Vienna and the University of Vienna. In addition to the academic programme which features renowned participants, the conference offers a diverse range of events for all those who would like to learn more about crystallography: public lectures, a science slam as well as the presentation of the world’s largest crystal model as part of an exhibition in the Arcaded Courtyard of the University of Vienna.
Keeping the genome in shape: a physiological role for NHEJ in meiosis
DNA double strand breaks (DSB) are an essential feature during meiosis, a cell division process found in all sexually reproducing organisms. Repair of these breaks mediates exchange of genetic information between parental genomes. Errors during this process can cause genome instability. The lab of Peter Schlögelhofer has discovered that the non-homologous end joining (NHEJ) DNA repair mechanism plays an important role in repairing ribosomal DNA during meiosis. The findings are published in the current issue of The Plant Cell.
"Science is my life"
Professor Hans Tuppy, born in 1924, started his studies in Chemistry at a time when Europe was struck by World War II. The war took both his father and brother. After graduation in 1948, his career brought him to Cambridge where he worked in the world-famous lab of Fred Sanger on the sequencing of insulin. His next career step was the Carlsberg Laboratory in Copenhagen, from where he returned to the University of Vienna. Later in his career, he shaped Austria’s scientific landscape as Minister of Science and as Rector of the University of Vienna among many other positions. Today, at the age of 95, he still comes to work in his office at the Max Perutz Labs.
Centrioles - critical players in cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth. Scientists led by Alexander Dammermann at the Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, now examine how centrioles contribute to this process. The findings, published in “Developmental Cell”, help to elucidate the function of these tiny cellular structures in mitosis.
How cells quickly activate innate immunity
Upon infection cells manage to quickly switch from normal operation to immune reaction in a matter of minutes. This innate immunity requires a cellular signal cascade that activates antimicrobial or antiviral gene expression. Scientists led by Thomas Decker at the Max Perutz Labs have discovered that an alternative version of the activator of antimicrobial gene expression is constantly present on DNA. A molecular switch between the alternative and the regular version enables a quick onset of the immune response. The findings are published in the journal “Nature Communications”.
“I am excited by the idea that we discover the unknown about the most fundamental things in life.”
Originally from Turkey, Elif Karagöz’s scientific journey brought her to Germany to do her Master’s and to the Netherlands for her PhD at Utrecht University. She then moved to the US where she held a PostDoc position at the University of California at San Francisco. She joined the Max Perutz Labs as a group leader in January 2019 to study stress responses in cells.
New tool for visualizing molecule properties
Nucleic acids and proteins can be described on different structural levels, but all depend on the most basic - the primary structure. It describes the exact sequence of amino acids or nucleotides – the smallest molecular units that form proteins or RNA and DNA. These units have certain physical and chemical properties, like charge or propensity to interact with water, which ultimately determine the property and, therefore, the function of the whole molecule.
First Max Perutz Day kicks off a new era at the Max Perutz Labs Vienna
On the occasion of Max Perutz’ 105th birthday, the science community, students and stakeholders from the University of Vienna and the Medical University gathered to celebrate the first Max Perutz Day on May 23rd. The event was held to honour the scientific legacy of the Nobel prize winner for whom the institute is named.
All pictures (c) feel image / matern
Andreas Bachmair appointed full professor
Max Perutz Labs group leader Andreas Bachmair has been promoted to full Professor of Genetics and Biochemistry by the University of Vienna.
New research platform to investigate key player in earth’s ecosystem
The University of Vienna has awarded €470.000 to an interdisciplinary research platform co-headed by Max Perutz Labs group leader Kristina Djinovic-Carugo, together with Michael Wagner and Holger Daims from the Department of Microbiology and Ecosystem Science at the University of Vienna. The platform will research the Comammox bacteria, an important component in the global ecosystem and especially in the planet’s nitrogen cycle.
office@maxperutzlabs.ac.at
+43 1 4277 240 01
Vienna BioCenter Dr.-Bohr-Gasse 9, 1030 Vienna
This website uses cookies to ensure you get the best experience on our website.
» Privacy Policy